Fast evaluation, weights and nonlinearity of rotation-symmetric functions

نویسندگان

  • Thomas W. Cusick
  • Pantelimon Stanica
چکیده

We study the nonlinearity and the weight of the rotation-symmetric (RotS) functions defined by Pieprzyk and Qu [6]. We give exact results for the nonlinearity and weight of 2-degree RotS functions with the help of the semi-bent functions [2] and we give the generating function for the weight of the 3-degree RotS function. Based on the numerical examples and our observations we state a conjecture on the nonlinearity and weight of the 3-degree RotS function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinearity of quartic rotation symmetric Boolean functions

Nonlinearity of rotation symmetric Boolean functions is an important topic on cryptography algorithm. Let e ≥ 1 be any given integer. In this paper, we investigate the following question: Is the nonlinearity of the quartic rotation symmetric Boolean function generated by the monomial x0xex2ex3e equal to its weight? We introduce some new simple sub-functions and develop new technique to get seve...

متن کامل

The Weight and Nonlinearity of 2-rotation Symmetric Cubic Boolean Function

The conceptions of χ-value and K-rotation symmetric Boolean functions are introduced by Cusick. K-rotation symmetric Boolean functions are a special rotation symmetric functions, which are invariant under the k − th power of ρ. In this paper, we discuss cubic 2-value 2-rotation symmetric Boolean function with 2n variables, which denoted by F2n(x2n). We give the recursive formula of weight of F2...

متن کامل

Generalized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 Variable Boolean Functions with Nonlinearity 242

Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs an...

متن کامل

Enumeration of 9-variable Rotation Symmetric Boolean Functions

The existence of 9-variable Boolean functions having nonlinearity strictly greater than 240 has been shown very recently (May 2006) by Kavut, Maitra and Yücel. The functions with nonlinearity 241 have been identified by a heuristic search in the class of Rotation Symmetric Boolean Functions (RSBFs). In this paper we efficiently perform the exhaustive search to enumerate the 9-variable RSBFs hav...

متن کامل

Fast Hashing and Rotation-Symmetric Functions

EÆcient hashing is a centerpiece of modern Cryptography. The progress in computing technology enables us to use 64-bit machines with the promise of 128bit machines in the near future. To exploit fully the technology for fast hashing, we need to be able to design cryptographically strong Boolean functions in many variables which can be evaluated faster using partial evaluations from the previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 258  شماره 

صفحات  -

تاریخ انتشار 2002